Summary
Follow
By following projects, you will receive weekly digest mails (on Friday) that provide an
overview of the tweets and news posted on this portal of the followed projects.
SunCoChem will have an important impact in reduction of the dependence of the European Chemical Industry (ECI) on carbon feedstock by producing a competitive and integrated solution enabling the carbon-netural production of high valuable chemicals from solar energy, H20 and CO2.
SunCoChem will provide a solution based on a competitive tandem photoelectrocatalytic reactor (TPER) to efficiently produce oxo-products from CO2, water and sunlight. This will be achieved by process intensification coupling a sun-driven carbon dioxide reduction to CO/water oxidation to O2 with C-C bond carbonylation reaction catalysed by novel multifunctional hybrid photoelectrocatalysts (PEcats)
SunCoChem is focused on the production of 3 main oxo-products of interest for three important chemical industries in Europe: i) Glycolic Acid, used as polymers building block and of interest to AVANTIUM CHEMICALS BV; ii) Valeraldheyde, a flavor ingredient of interest to and produced by DOW CHEMICALS; and iii) LimoxalTM a fragrance ingredient of interest to and produced by IFF.
The TPER will be demonstrated at a TRL5 scale of 1m2 and validated by a set of 3 case studies corresponding to the 3 selected products, representing real chemical industry needs from the 3 mentioned industrial partners. The sustainable and efficient technology for oxo-products production will be demonstrated by addressing the recycling CO2 flue gas and by-products from Dow Chemicals and IFF, with an improved chemical energy conversion efficiency (≥10%) and CO2 emissions reduction (≥50%). The advantages of the SunCoChem technology in terms of social and environment impact will be analyzed with respect to conventional production routes of the same target products.
Maximum impact will be ensured through the involvement of the mentioned three industrial end users in the validation of the technology, a well-balanced dissemination, standardization, communication, stakeholders engagement and exploitation of the different results.
SunCoChem will provide a solution based on a competitive tandem photoelectrocatalytic reactor (TPER) to efficiently produce oxo-products from CO2, water and sunlight. This will be achieved by process intensification coupling a sun-driven carbon dioxide reduction to CO/water oxidation to O2 with C-C bond carbonylation reaction catalysed by novel multifunctional hybrid photoelectrocatalysts (PEcats)
SunCoChem is focused on the production of 3 main oxo-products of interest for three important chemical industries in Europe: i) Glycolic Acid, used as polymers building block and of interest to AVANTIUM CHEMICALS BV; ii) Valeraldheyde, a flavor ingredient of interest to and produced by DOW CHEMICALS; and iii) LimoxalTM a fragrance ingredient of interest to and produced by IFF.
The TPER will be demonstrated at a TRL5 scale of 1m2 and validated by a set of 3 case studies corresponding to the 3 selected products, representing real chemical industry needs from the 3 mentioned industrial partners. The sustainable and efficient technology for oxo-products production will be demonstrated by addressing the recycling CO2 flue gas and by-products from Dow Chemicals and IFF, with an improved chemical energy conversion efficiency (≥10%) and CO2 emissions reduction (≥50%). The advantages of the SunCoChem technology in terms of social and environment impact will be analyzed with respect to conventional production routes of the same target products.
Maximum impact will be ensured through the involvement of the mentioned three industrial end users in the validation of the technology, a well-balanced dissemination, standardization, communication, stakeholders engagement and exploitation of the different results.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/862192 |
Start date: | 01-05-2020 |
End date: | 31-10-2024 |
Total budget - Public funding: | 6 771 145,00 Euro - 6 617 645,00 Euro |
Cordis data
Original description
SunCoChem will have an important impact in reduction of the dependence of the European Chemical Industry (ECI) on carbon feedstock by producing a competitive and integrated solution enabling the carbon-netural production of high valuable chemicals from solar energy, H20 and CO2.SunCoChem will provide a solution based on a competitive tandem photoelectrocatalytic reactor (TPER) to efficiently produce oxo-products from CO2, water and sunlight. This will be achieved by process intensification coupling a sun-driven carbon dioxide reduction to CO/water oxidation to O2 with C-C bond carbonylation reaction catalysed by novel multifunctional hybrid photoelectrocatalysts (PEcats)
SunCoChem is focused on the production of 3 main oxo-products of interest for three important chemical industries in Europe: i) Glycolic Acid, used as polymers building block and of interest to AVANTIUM CHEMICALS BV; ii) Valeraldheyde, a flavor ingredient of interest to and produced by DOW CHEMICALS; and iii) LimoxalTM a fragrance ingredient of interest to and produced by IFF.
The TPER will be demonstrated at a TRL5 scale of 1m2 and validated by a set of 3 case studies corresponding to the 3 selected products, representing real chemical industry needs from the 3 mentioned industrial partners. The sustainable and efficient technology for oxo-products production will be demonstrated by addressing the recycling CO2 flue gas and by-products from Dow Chemicals and IFF, with an improved chemical energy conversion efficiency (≥10%) and CO2 emissions reduction (≥50%). The advantages of the SunCoChem technology in terms of social and environment impact will be analyzed with respect to conventional production routes of the same target products.
Maximum impact will be ensured through the involvement of the mentioned three industrial end users in the validation of the technology, a well-balanced dissemination, standardization, communication, stakeholders engagement and exploitation of the different results.
Status
SIGNEDCall topic
CE-NMBP-25-2019Update Date
27-10-2022
Images
No images available.
Geographical location(s)