Standards, technical committees and working groups
Standards
Comment:
The major goal of INTEGRADDE was to develop a novel end-to-end solution capable of demonstrating the potential of Directed Energy Deposition (DED) processes for the manufacturing of certified large metal components in strategic metalworking sectors. The project is focused on additive manufacturing, specifically laser metal deposition. This technology requires validation, and the compatibility of various pieces in the manufacturing process must be verified under real-world situations. Standardization, therefore, has great significance. The case study demonstrates the need for adequate planning of resources for standardisation as well as the requirement to provide project partners who are unfamiliar with standards and standardisation with training. Two obstacles stand out: first, the distinct nature and timetables of standardisation processes from those of research, and second, the apparent conflict between IP protection and the requirement for openness during the standardisation process. Nevertheless, the use of standards/standardisation seeks to help increase quality and reliability in the specific AM process.
Standards, technical committees and working groups
Standards
Standards according to SDOs
ISO (International Organization for Standardization)
ISO/TC 261 Additive manufacturing
ISO/TC 261/WG 3 Test methods and quality specifications
ISO/ASTM PWI 52926-1 Additive manufacturing of metals — Qualification principles — Part 1: General qualification of operators
ISO/ASTM PWI 52926-5 Additive manufacturing – Qualification principles – Part 5: Qualification of machine operators for metallic parts production for DED-Arc preliminary stage (00) (ISO/PWI stage)
The major goal of INTEGRADDE was to develop a novel end-to-end solution capable of demonstrating the potential of Directed Energy Deposition (DED) processes for the manufacturing of certified large metal components in strategic metalworking sectors. The project is focused on additive manufacturing, specifically laser metal deposition. This technology requires validation, and the compatibility of various pieces in the manufacturing process must be verified under real-world situations. Standardization, therefore, has great significance. The case study demonstrates the need for adequate planning of resources for standardisation as well as the requirement to provide project partners who are unfamiliar with standards and standardisation with training. Two obstacles stand out: first, the distinct nature and timetables of standardisation processes from those of research, and second, the apparent conflict between IP protection and the requirement for openness during the standardisation process. Nevertheless, the use of standards/standardisation seeks to help increase quality and reliability in the specific AM process.